Friendess, Inc.

柏楚 CypTube 激光切割控制系统 用户手册

版本: V6.4.0

欢迎

感谢您使用柏楚 CypTube 激光切割控制系统!

『柏楚 CypTube 激光切割控制系统』(以下简称 CypTube)是一套用于方管类激光切割的系统软件,包含激光切割工艺处理、常用排样功能和激光加工控制。主要功能包括图形处理,参数设置,自定义切割过程编辑,路径规划,模拟,以及切割加工控制。

CypTube 软件必须配合加密狗和控制卡使用时,才能进行实际的加工控制。

当 CypTube 运行在一台没有加密狗的电脑上时,将进入演示模式,您可以正常使用除加工 控制以外的其他所有功能。因此 CypTube 可安装在独立的笔记本上用于加工前的设计。

请注意,本用户手册仅作为 CypTube 软件的主程序的操作说明,随 CypTube 软件而安装的 其他工具软件,包括平台配置工具,请参考其他手册或与我们联系。

本文档是基于 CypTube 版本 6.4.516.1 而撰写的,由于软件功能的不断更新,您所使用的 CypTube 软件在某些方面可能与本手册的陈述有所出入,在此谨表歉意。

如您在使用过程中有任何的疑问或建议,欢迎您随时与我们联系!

机床的运行及激光切割效果与被切割的材料、所使用的激光器、所 使用的气体、气压以及您所设置的各项参数有直接的关系,请根据 您的切割工艺要求严肃谨慎的设置各项参数!

不恰当的参数设置和操作可能导致切割效果下降、激光头或其他机 床部件损坏甚至人身伤害, CypTube 激光切割控制系统已尽力提供了 各种保护措施,激光设备制造商及最终用户应当尽量遵守操作规程, 避免伤害事故的发生。

柏楚电子不承担由于使用本手册或本产品不当而导致的任何直接 的、间接的、附带的和/或相应产生的损失和责任!

<i>—</i> `,	付	央速入门	0
	1.1	功能特点	.0
	1.2	获取和安装软件	0
		1. 用户界面	.1
		2. 工具栏	.2
	1.3	操作流程	.3
		1. 导入图形	.3
		2. 工艺设置	.4
		3. 路径规划	.4
		4. 加工前检查	.4
		5. 实际加工	.4
<u> </u>		〔艺设置	6
	2.1	引入引出线	.6
		1. 区分内外模	.6
		2 . 自动引入引出线	.6
		3. 检查引入引出线	.6
	2.2	割缝补偿	.6
	2.3	图层参数	.7
		1. 参数说明	.8
		2. 功率调节	.9
		3. 材料库	10
Ξ,	力	口工控制1	1
	3.1	机械坐标系	11
	3.2	发生异常后寻找零点	11
	3.3	报警	11
	3.4	手动测试	12
	3.5	软限位保护	12
	3.6	走边框	13
	3.7	加工和空走	13
	3.8	停止、暂停和继续	14
	3.9	断点记忆	14
	3.10	0 从任意位置开始加工	15
	3.12	1 全局参数	15
	3.12	2 参数说明	15
四、	ßf	竹录1	17
	4.1	方管调试	17
		1. 调水平方向	17
		2. 调管材中心	18
		3. 方法 1+ 方法 2	18
		4. 空走	19
	4.2	快捷键	19

1.1 功能特点

- □ 支持 IGES 图形数据格式。
- □ 支持任意拉伸体管材切割。
- **口** 独有的一键效准方管水平,自动定位管材的旋转中心功能¹。
- □ 以所见即所得的方式设置引入引出线、割缝补偿等。
- □ 自动区分内外模,并根据内外模确定割缝补偿方向,进行引线检查等。
- □ 灵活多样的自动排序和手工排序功能,支持通过群组部分固定加工次序
- □ 独有的加工次序浏览功能,比模拟更加交互式的查看加工次序。
- ➡ 支持分段穿孔、渐进穿孔、预穿孔,支持对穿孔过程和切割过程设置单独的激光功率、 频率、激光形式、气体类型、气压、跟随高度等。
- □ 支持随速功率调节,可设置单独的引入引出线速度。
- □ 强大的材料库功能,允许将全部工艺参数保存以供相同材料再次使用。
- 🛱 加工断点记忆,断点前进后退追溯;允许对部分图形加工
- □ 支持停止和暂停过程中定位到任意点,从任意位置开始加工
- □ 支持定高切割、自动寻边和板外起刀、抬刀²。
- □ 强大的扩展能力,多达 15 个 PLC 过程编辑, 30 多项可编程过程³
- □ 可编程输入输出口,可编程报警输入²。
- □ 支持通过无线手持盒、以太网对系统进行远程控制4。

1.2 获取和安装软件

您可以联系供应商或客服人员获得软件安装程序。

安装之前,请检查您的系统是否满足以下最低要求:

- □ Windows 2000 以上 32 位操作系统。

- □ 15 英寸以上 VGA 显示器,分辨率 1024*768 以上,推荐 32 位真彩色显示。
- **□** 至少 2 个 USB 接口。
- ✿ 如果您使用的操作系统是基于 Vista 的(包括 Windows Vista, Windows 7, Windows 8, Windows 2008 Server),为避免可能的错误,请尽量使用管理员方式运行。

检查完成之后可以开始安装软件,直接运行安装程序即可。在基于Vista的操作系统上安装 程序需要有管理员权限才能运行。

²此项功能需要 BCS100 调高器配合。

¹此项功能需要 BCS100 调高器配合。

³此项功能受密码保护,有权限的技术人员和设备制造商方可操作。

⁴需要相应的选配件支持。

1. 用户界面

界面正中央黑底的为视窗显示区域。

界面正上方从上到下依次是**标题栏、菜单栏**和**工具栏**,其中工具栏以非常明显的大图标分 组方式排列,大部分常用功能都可以在这里找到。菜单栏包括"文件"菜单和 4 个工具栏菜单 "开始"、"绘图"、"数控"和"视图",选择这 4 个菜单可以切换工具栏的显示。标题栏左侧有 一个称为"快速访问栏"的工具栏,用于快速新建、打开和保存文件,撤销和重做也可以通过 这里快速完成。

界面左侧是"视图工具栏",在后续说明中我们有时直接称为"左侧工具栏";这里提供了 基本的多视角视图查看功能,包过前,后,左,右,俯视,仰视图 6 个基本视角以外还包含西 南,东南,西北,东北等轴侧视角。以及前面 5 个按钮用于切换功能模式,包括选择、任意角

度旋转、次序编辑、拖动和缩放。其中任意角度旋转"²²²"选择后也可拖动图像做三维旋转查 看。

绘图区右侧是"**图层工具栏**",在后续说明中我们有时直接称为"右侧工具栏",包括一个 "图层"按钮和 16 个颜色方块按钮;单击"图层"按钮将打开"图层"对话框,可以设置大部 分的参数;16 个颜色方块按钮,每一个对应一个图层,选中图形时单击它们表示将选中图形移 动到指定的图层;没有选中图形时单击它们表示设置下次绘图的默认图层。其中第一个白色方 块表示一个特殊的图层,"图层 0",该图层上的图形将以白色显示,并且不会被加工。

界面下方包括两个滚动显示的文字窗口。左边的为"CAD 命令窗口",所有图形优化指令的 相关提示信息也在这里显示;右边的窗口为"系统消息窗口",系统消息都将在这里显示,每一 条消息都带有时间标记,并根据消息的重要程度以不同颜色显示,包括提示、警告、报警、错 误等。

界面最底部是状态栏,根据不同的操作显示不同的提示信息。状态栏的右侧包括几个常用

信息,包括鼠标所在位置、加工状态、激光头所在位置。最后一个微调距离参数,用于使用方 向键快速移动图形,参见相关章节说明。

界面右侧的矩形区域被称为"**控制台**",大部分与控制相关的常用操作都在这里进行。从上 到下依次是坐标系选择、手动控制、加工控制、加工选项和加工计数等。

2. 工具栏

CypTube 的工具栏使用了一种被称为 Ribbon(丝带)的风格样式,将常用的功能分栏分区放置,并且使用了许多大尺寸的按钮方便操作。下图帮助您了解这种新型工具栏:

整个工具栏被分为4个"分页",通过"开始"、"绘图"、"数控"和"视图"4个菜单来选择。在加工时将会出现"正在加工"分页,并且在停止之前不能切换到其他分页。

请注意,部分大尺寸按钮的下方带有一个小三角,称为"下拉按钮",按下此按钮会出现一 个与此按钮相关的"下拉菜单",提供更丰富的操作选项。鼠标移动到这种按钮上方时会显示两 个明显不同的矩形,按下按钮的上半部分是直接执行按钮对应的功能,而按下按钮的下半部分 则是打开一个菜单。

例如:工具栏第一个分栏"查看"提供了多项帮助控制显示效果的按钮,如下图:

单击上图中的按钮,显示效果立即生效,您可以在绘图板中看到显示效果的变化。请注意 按钮本身的显示变化,淡黄色底色时为开启状态,表示对应效果已开启,没有淡黄色底色则表 示对应显示效果尚未开启。

1.3 操作流程

1. 导入图形

单击界面左上角快速启动栏的打开文件"²⁰¹"按钮,弹出打开文件对话框,选择您需要 打开的图形。打开文件对话框的右侧提供了一个快速预览的窗口,帮助您快速找到您所需要的 文件。

			打开		×	
查找范围(I):	퉬 方管切割	,	v G 🜶 🖻 🛄 🖳	54 Entities, 68.47 X 74.92 X 145.	Preview	
(Bin)	名称	*	修改日期 "查看"菜单	•		
最近访问的位置	50-50-012	2.igs	2013-5-4 11:20	选择文件自动预览		
- HOC WITCH	60-1.igs		2013-7-20 11:21		A	
	20130627	j2.igs	2013-6-27 16:12			
	12345678	9.igs	2013-7-22 14:33			
旲囬	20130627	02.igs	2013-6-27 15:43		$X \setminus [$	
	🕅 ell.igs		2013-7-23 11:50	X	$\langle \chi \chi $	
	ellipse.igs		2013-7-23 10:36		XI	
库	f214x.igs		2013-3-16 16:19	XX and X		
	figa2.igs		2013-3-16 16:18		CZ PT X	
	fs_sample	_font1.igs	2013-5-8 21:57			
计算机	🗊 fs_sample	_font2.igs	2013-5-28 17:54		8553	
(3	model1.ig	s	2013-6-28 14:14	K K	Since	
	model2.ia	s	2013-5-8 21:57	· \ \ / / / / / / / / / / / / / / / / /	2.50	
网络	<		>	X		
	文件名(M):	fs_sample_font2.igs	▼ 打开 @			
	文件类型 (I):	所有支持的文件	▼ 取消			
	拉伸方向 (2):		绘图时采用的协伸方向	()	城市放大图形	
	内外选择(S):	■ 小居松 商営(0) □ 内居松	南建(1) □ 今朝曲建(4)	· · · · · · · · · · · · · · · · · · ·		
		一	2		.ii.	

注意:请确保您导入的图形拉伸方向与您绘图拉伸方向一致,否则可能会导致出现导入图 形不正确的情况。并且建议绘图时导个小圆角过渡,使得加工旋转更流畅。

并且软件会自动识别区分您所需要加工的轮廓轨迹,而识别为不需要加工的辅助线则用灰 色线条表示。

2. 工艺设置

在这一步中您可能会用到工具栏"工艺设置"一栏中的大部分功能,包括设置引入引出线、

设置补偿等。大尺寸按钮"引刀线"可以用于设置引入引出线;按钮"^企补偿"用于进行割缝 补偿: 按钮"[↑] 友向"可将单个图形反向。单击"[○] 起点"按钮,然后在希望

作为快速入门教程,您可以按下 Ctrl+A 全选所有图形,然后单击"引刀线"按钮,设置好 引刀线的参数,然后单击确定,软件会自动查找合适的位置加入引入引出线。单击"引刀线" 下方的小三角,选择"检查引入引出"可以进行引入引出线的合法性检查。

单击右侧工具栏的"图层"按钮,可以设置详细的切割工艺参数。"图层参数设置"对话框 包含了几乎所有与切割效果有关的参数,按下"F6"可以快速调出此窗口进行快速设置。

3. 路径规划

在这一步中根据需要对图形进行排序。单击排序"**W**"按钮可以自动排序,单击排序 按钮下方的小三角可以选择排序方式,可以控制是否允许自动排序过程改变图形的方向。

如果自动排序不能满足要求,可以单击左侧工具栏上的"远"按钮进入手工排序模式,以 鼠标依次单击图形,就设定了加工次序。按住鼠标,从一个图向另一个图画一条线,就可以指 定这两个图之间的次序。

4. 加工前检查

在实际切割之前,可以对加工轨迹进行检查。拖动如下图所示的交互式预览进度条,可以 快速查看图形加工次序,单击交互式预览按钮,可以逐个查看图形加工次序。

5. 实际加工

请注意,这一步必须要在实际的机床上才能运行,必须要加密狗和控制卡的支持。

在正式加工前,需要将屏幕上的图形和机床对应起来。装夹好方管零件后,将切割头置于 管子上方,再单击无线手持盒上的"自动寻边"按钮,软件会自动校准方管水平度与寻找旋转

中心。找到旋转中心后单击软件上的______按钮记录旋转中心。

如果红色十字光标所示的"激光头位置"与实际机床上的激光头位置不符,请检查程序零 点或机械零点是否正确。

屏幕上检查无误后,单击"控制台"上的" 适 走边框 "按钮,系统将控制机床沿待加工

图形的最外框走一圈,您可以借此检查加工位置是否正确。还可以通过单击"^{全走}"按 钮在不打开激光的情况下沿待加工图形完整的运行,借此更详细的检查加工是否可能存在不当 之处。

二、工艺设置

本章介绍 CypTube 提供的工艺设置相关功能,由于大部分工艺参数都和被切割的材料、使用的激光器、气压等有直接的联系,所以请根据实际工艺要求进行设置。这里提到的所有的参数,包括图片中的参数,仅作为示例,不应该被认为是指导参数。

警告!不恰当或错误的参数可能导致切割效果变差甚至损坏机床,请谨慎设置。

2.1 引入引出线

1.区分内外模

打开 IGES 等外部文件时, CypTube 会自动区分内外模。CypTube 是按照包围关系来区分内 外模的,始终将最外层作为外膜,外膜的下一层为内模,内模下一层再外膜,依次类推。 在添加引线时,外膜为阳切,从外部引入,内模为阴切,从内部引入。要手工设定阴切、

阳切,请选择要设定的图形,然后单击工具栏上的" 🎽 內外" 按钮。

2. 自动引入引出线

选择需要设置引入引出线的图形,然后单击工具栏上的"^{引刀线}"图标,在弹出的窗口中年 设置引入引出线的参数。

₹₹...

请注意,自动引入引出线,将会对图形进行搜索以确定最合适的引入位置,因此图形之前 的引入位置、类型等参数都将被覆盖。

3. 检查引入引出线

单击"引刀线"按钮下的小三角,然后选择"检查引入引出"可以对已经设置的引入引出 线进行合法性检查,该功能会将长度太大的引线缩短,从而避免与其他图形交叉。

2.2 割缝补偿

选中要补偿的图形,然后单击工具栏上的"一个补偿"按钮进行割缝补偿。

割缝宽度应根据实际切割结果测量获得,补偿后的轨迹在绘图板中以白色表示,加工时将 以补偿后的轨迹运行;经过补偿的原图将不会被加工,仅在绘图板中为方便操作而显示。

割缝补偿的方向可以手工选择,也可以根据阳切、阴切自动判断,阳切向外补偿,阴切则 向内补偿。

割缝补偿时可以选择对拐角以圆角还是直角过渡,如下图所示:

图中绿色为原图,白色为补偿后的轨迹,淡黄色为从原图拐角处所作的垂线。从图中可以 看出垂线两侧补偿之后可以保证割缝边缘与原图重合,但拐角处则需要过渡。通常圆角过渡能 保证在过渡过程中割缝边缘仍然与原图重合,并且运行更加光。

要取消补偿,请选择需要取消补偿的图形,然后单击"清除"按钮,选择"取消补偿"。

2.3 图层参数

CypTube 提供了 15 个图层,每一个图层都可以单独设置包括切割速度、激光功率、气压、切割高度等工艺参数。

单击工具栏上的"图层 " 按钮,可以打开"图层参数设置"对话框,该对话框包含了 加工时所需的几乎所有工艺参数。对话框的第一页是"全局参数",用于控制图层之外的参数, 如空移速度、点射功率等,还可以选择速度和加速度单位。对话框的其他页面列出了当前用到 的所有图层,单击每一个图层,可以单独设置该图层的参数。鼠标按住"图层*"并拖动,可以 改变图层之间的次序,排列在前的图层先加工。

切割速度:	100 🗸	毫米/秒	上抬高度:	10 🗸	毫米	关光前延时:	0 ~	ms
峰值电流:	100 🗸	%	○ 直接切割(○分段穿孔(● 新进穿孔	🗌 三级穿孔 📗	定高切割	_] 板外跟随
			新进速度:	5 🗸	毫米/秒			
开光延时:	200 🗸	臺秒	穿孔延时:	200 🗸	臺秒	爆破延时:	500 v	臺秒
切割功率:	100 🗸	%	穿孔功率:	50 🗸	%	爆破功率:	50 v	%
切割高度:	1 🗸	毫米	穿孔高度:	5 🗸	毫米	爆破高度:	15 V	毫米
切割气压:	5 🗸	v	穿孔气压:	5 🗸	v	爆破气压:	5 Y	V
切割频率:	5000 🗸	Hz	穿孔频率:	20 🗸	Hz	爆破频率:	5000 v	Hz
切割气体: 💡	空气 🗸 🗸		穿孔气体:	氧气 🗸 🗸		爆破气体:	空气 ~	
入引出								
引入速度	100 🗸	毫米/秒	🗌 引出速度	100 🗸	毫米/秒			
率曲线			✔ 根据速度实	时调节功率		用户备注		
率(%) 東度:2.00%.1	力室:20.21%	6						^
		/						

请注意:"图层参数设置"对话框中的内容可能因使用的激光器不同、气体管路配置不同、 使用的调高器不同等而显示不同的选项,下图仅供参考,请以您软件显示的实际为准。

1. 参数说明

下表对图层中的部分参数进行了简要说明。

工艺参数						
切割速度	设置实际切割的目标速度。由于在切割轨迹的首末段及拐弯处存					
	在加减速,往往实际的切割速度小于该速度。					
穿孔时间	将被切割板材击穿所需要的时间。根据实际板材的厚度和材质设					
	置。(渐进穿孔时可将该参数设置的很小甚至设置为0)					
上抬高度	设置切割完一段曲线后激光头上抬的高度。切割暂停时 Z 轴也会					
	上抬一定高度,该高度也是上抬高度。					
峰值电流	设置光纤激光器的峰值电流,即峰值功率。峰值功率决定了机器					
	所能达到的最大切割功率,500W的切割机,若峰值电流设置成					
	80%, 那么切割时所能达到的峰值功率为 500W * 80% = 400W。					
	切割类型					
直接切割	穿孔与切割采用同样的参数,常用于薄板切割。					
分段穿孔	穿孔与切割采用不同的参数,常用于厚板切割。					
渐进穿孔	在分段穿孔的基础上,采用边穿孔边慢速下降的变离焦量的穿孔					
	方式,常用于厚板切割。渐进穿孔时可将穿孔时间设置的很小,					
	如100MS,此时实际穿孔时间=100MS+从穿孔高度慢速下降至切割					
	高度所需的时间。					

三级穿孔	在上述穿孔的基础上,采用渐进或分段的方式从爆破高度采用采
	用爆破穿孔工艺下降到穿孔高度,常用于厚板穿孔。
定高切割	第一次开随动定高到与板材距离切割的高度后关闭跟随,一直维
	持在此 Z 轴坐标进行切割
板外跟随	从板材外面不打孔直接切入板材,常用于厚板或者高精度要求的
	零件切割,需要搭配全局参数的"保存参照高度"功能使用
	切割参数
切割功率	设置切割时采用的激光功率,即 PWM 调制信号的占空比。
切割高度	设置切割时激光头距离板材的高度。
切割气压	设置切割时辅助气体的气压,需与比例阀或多气阀配合使用。
切割频率	设置切割时 PWM 调制信号的载波频率,也就是1秒内的出光次数,
	该值越大表示出光越连续。
切割气体	设置切割时所使用的辅助气体类型。
	穿孔参数
渐进速度	设置使用渐进穿孔时从穿孔高度慢速下降到切割高度的速度。
穿孔功率	设置穿孔时采用的激光功率,即 PWM 调制信号的占空比。
穿孔高度	设置穿孔时激光头距离板材的高度。
穿孔气压	设置穿孔时辅助气体的气压,需与比例阀或多气阀配合使用。
穿孔频率	设置穿孔时 PWM 调制信号的载波频率,穿孔时一般采用较低的频
	率,用脉冲穿孔来避免爆孔。
穿孔气体	设置穿孔时所使用的辅助气体类型。
	其他参数
使能短距离不上抬	启用该功能后, 若两个图形间的空移距离小于全局参数中"短距
	离不上抬的最大空移长度"的设置值,则前一个图形加工完成后,
	Z 轴不上抬,直接空移到下一个图形的起点开始加工。
此图层不跟随跟随	切割时不使用调高器进行跟随运动。
带膜切割	对于零件先在较高的随动高度用较低的功率进行"烧膜"之后再
	沿着轨迹进行切割
根据速度实时调节功率	启用该功能后,加工时系统会根据实际切割速度实时调整激光功
	率(PWM 信号的占空比),对优化拐角的切割质量有较大帮助。
	引入引出
引入速度	设置引入线的加工速度,选中有效。未选中时使用切割速度。
引出速度	设置引出线的加工速度,选中有效。未选中时使用切割速度。

2. 功率调节

如果选择了"**团根据速度实时调节功率**",在切割过程中切割功率将会随速度变化而变化,

具体的变化值由功率曲线决定。通过鼠标可以拖动和编辑功率曲线。

功率曲线图的横坐标为切割速度,纵坐标为切割功率,单位为百分比。通过该表可以反映 当实际运动到拐弯处速度下降至目标速度的百分之几时,实际功率需要下降至切割功率的百分 之几。

如上图所示,如果激光器功率 500W 设定切割速度为 100mm/s,峰值电流 90%,切割功率 80%,则当实际切割速度下降到 40mm/s,也就是上图红色标记点时,激光器的功率为: 激光器功率 X 峰值电流(百分比) X 切割功率(百分比) X 随速功率调节(百分比) = 500W X 90% X 80% X 62.43% = 223.75W 但是无论功率如何下降,都不会低于一个事先设定的最低值,一般是 10%,即 50W。 如果没有选中 "□**根据速度实时调节功率**",则切割过程中功率将保持不变。以上面的例子,

则切割过程中的功率为 500W X 90% X 80% = 360W

3. 材料库

所有参数编辑完成后,用户可以将该图层中的所有参数保存到材料库以便下次继续使用。

单击"**冒保存到材料库**"按钮,输入文件名,即可保存为材料库。建议用户以材料特性为名称 设置文件名,如: 2mm 碳钢。

下次需要使用材料库时,单击" ²² 从材料库读取</sup>",然后选择之前保存的文件即可。CypTube 会提示用户"是否覆盖当前的参数",请点击"是"系统会自动将材料库参数导入,"否"则放 弃读取操作。

三、加工控制

CypTube 是一套辅助设计和加工控制一体的软件,在前述所有图形及参数准备都可以脱离机 床进行,全部设计完成之后可以将文件保存,然后复制到机床上进行加工。

3.1 机械坐标系

机床坐标系是由机床结构及机床参数唯一确定,任何时候通过"回机械原点"所建立的坐 标系都是一致的。

不管使用什么机械结构, CypTube 对坐标系的定义都是一致的。所有的运动都是激光头相对 于工件的运动,激光头向右为 X 正向,激光头向后为 Y 正向,也就是工件(钢板)的左下角为 最小坐标,右上角为最大坐标。

旋转轴与Y轴形成差补,平行于Y轴。从Y-方向看Y+时,以逆时针旋转为正转,以顺时针旋转为反转。

3.2 发生异常后寻找零点

情况一

如仅仅是激光器或辅助气体等外设发生异常,导致加工被迫中断,并没有导致坐标系偏移。可直接点击"回零",回到零点。

情况二

如突然掉电,伺服报警等将导致机械坐标系发成偏移的异常发生后,建议用户执行"回 机械原点",重置机械坐标系。然后点击"回零"找到零点。

3.3 报警

机床运行过程中 CypTube 会对所有部件进行监测,一旦监测到报警,就立即以红色标题栏显示,并采取停止运动等措施。在系统报警未消除之前,大量的操作都将被禁止,请检查机床直至报警消除之后再操作。报警示例如下图:

除标题栏之外,界面右下方的"系统消息窗口"也会显示报警信息。报警消除之后标题栏 的红色显示会消失,"系统消息窗口"中的信息则被保留下来。双击"系统消息窗口"可以打开 查看全部历史记录,从而了解系统运行过程中发生的事件。

除报警外,如果 CypTube 检测到其他运行异常时,将会根据异常级别,以不同颜色在"系

统消息窗口"显示,包括警告、提醒、消息等。这些信息不会导致机床停止运动,但仍然建议 您及时关注系统显示的各类消息,以便尽早采取必要措施。

3.4 手动测试

控制台手动控制部分功能如下图所示:

带有"^①"图标的按钮,在相应的设备打开之后将会变成"^①"样式。其中"激光"按钮 是按下开启激光,放开关闭激光;其他的按钮则是按下切换,放开不执行任何动作,例如"吹 气",按下吹气,再次按下则关闭吹气。根据激光器的不同,"光闸"在按下后可能会过一段之 间才会变成"^①"样式,此状态时从激光器读取而来的。

请注意,所有的按钮动作都需要机床上对应的部件支持,如果机床并没有配置这些部件, 或者平台参数配置不正确,部分按钮可能会无效。

单击" 记录旋转中心 "可以记录机床当前位置为W轴旋转中心,之后当需要的时候, 单击" 返回旋转中心 "可以返回之前记录的位置。

3.5 软限位保护

启用软限位保护之后,如果系统检测到运动可能超出行程范围,就会提示"运动已超出行 程范围",不发出任何运动指令,防止可能发生的撞击。此时请检查图形和机床位置,确认无误 之后再操作。

除此之外,机床运动过程中系统也会实时监测机床坐标,一旦超出软限位立刻报警,并停 止所有运动。

请注意: 软限位保护依赖于机床坐标系,如果坐标系不正确,保护也将不正确。因此当系 统异常关闭、机床参数修改等操作之后应当通过"回原点"操作建立正确的机床坐标系!

3.6 走边框

13

单击控制台上的" 适 走 " 按钮, 激光头将沿 待加工图形 的外框空走一个矩形, 以便 您确定加工板材需要的大概尺寸和位置。走边框的速度在"图层参数设置"—"全局参数"———"检边参数"中设置。

请注意,走边框之前务必确定已经记录好旋转中心!

3.7 加工和空走

单击控制台上的 "**并**^始" 按钮开始加工,加工过程中将显示下图所示的监控画面,其 中包括坐标、速度、加工计时及跟随高度等信息。

N	3	N		Ŧ	tut		0527A.ctd(自动保存) - CypTube激光切割控制系					CypTube激光切割控制系	系统	ξ6.4.528.1 _ г ×
文件		开始	数控	视图	正在加工									*
				X坐标	-1.65mm	X速度	-51.047mm/s	讲给谏度	51.047mm/s	跟随高度 1	000mm	峰值申流 100.00%	٦	
-				Y坐标	119.943mm	Y速度	Omm/s	nationality.		Phillippine -				
停止	習	停地	æ. 1	W坐标	47.88°	W速度	15.014rpm	加工计时	00:00:04.922	实际高度 1	001mm	激光功率 20.00%		
	加工	控制						tat	状态					

显示上图画面时,将不能切换到工具栏的其他分页,这是为了防止加工过程中修改图形,但"文件"菜单仍然可以使用。如需在加工过程中修改参数,请先暂停,然后单击界面右侧工 具栏上的"图层"按钮。

单击控制台上的 " **P et** " 按钮开可以执行空走, 空走与实际加工的区别在于不开激光、 不开气体, 可选择是否开启跟随, 所有运行轨迹, 包括 "预穿孔"的空移、速度及加减速过程 等, 都和实际加工过程完全一致, 而且同样可以进行暂停、继续、前进、后退, 包括停止后的 断点记忆都与实际加工完全相同, 甚至可以在暂停之后修改参数再继续空走。因此空走可以用 于在不切割的情况下对整体加工过程进行全面的检查和模拟。

如果希望在空走的过程中开启跟随,请在"图层参数设置"一"全局参数"——"高级"

中选中" 空走时启用跟随 ", 默认情况下空走过程中

不开启跟随。

默认情况下加工完成自动返回零点,如果您希望加

工完成返回其他位置,请在控制台上选择所需要的位置,支持的位置包括零点、近端、远端、 下一段和指定点。如果取消" **加工完成自动返回**"相当于返回"终点",即加工完成后原地不 动。推荐选择加工完成返回零点。

每加工完成一次,控制台上的加工计数将加1,达到预先设定的次数后,将弹出对话框提醒,以便控制产量,单击"^{清零}"按钮可以将计数清零。如需循环加工,请单击"^{循环加工}"按钮。

3.8 停止、暂停和继续

3.9 断点记忆

加工过程停止或者因为意外而中止加工,系统会将断点记忆下来,只要没有修改图形或参数,再次单击"开始"时,系统将询问是否从上次停止的地方继续加工,如下图:

只有当开始按钮处于"^{**π**^{**μ**}}"状态时才会出现上图的对话框,如果开始按钮中带有"*" 变成"^{**π**^{**μ**}}"状态时,单击按钮将直接从头开始加工。

3.10 从任意位置开始加工

CypTube 支持从任意指定的位置开始加工,在希望开始的位置右键单击,然后选择"从这里 开始加工"。如右图:

为安全起见,选择"从这里开始加工"后,系统将弹出对话框 要求再次确认,确认无误后系统将首先空移到您指定的位置,然后 从那里开始加工,所指定位置之前的轨迹将不会被加工。

如果希望先定位到指定位置,但不开始加工,请选择"定位到 这里",系统将空移到您指定的位置,然后进入暂停状态。

您可以多次右键单击并选择"定位到这里"直至确认无误。也可以通过" 🏓 前进 "和

• 🛑 🗬 💷 " 按钮以更精确的方式定位。

3.11 全局参数

在"图层参数调整"对话框的"全局参数"选项卡中提供了一些运动控制参数可供调整, 调整这些参数会对机械运行的平稳性及加工效果、效率产生影响。

3.12 参数说明

下表列出了"全局参数"选项卡的部分参数。

运动参数							
空移速度 XY	平面轴空移运动的速度(不是加工的速度)。						
空移速度₩	旋转轴空移的转速(不是加工的速度)。						

检边速度	走边框的速度。
加工时旋转轴最大转速	请根据你的伺服电机最大转速结合你的减速比算出合适值。例如:
	电机最大转速 3000r/min, 减速比 1: 60. 那么加工时最大旋转轴
	速=3000/60=50r/min
空移加速度	空移运动时,各轴的最大加速度,一般设置为加工加速度的1.2~2
	倍
加工加速度	轨迹加工时,各轴的最大加速度,与加工速度配合使用。
拐弯加速度	轨迹加工时,在路径拐角处允许的最大加速度,用于限制大于90
	度转角的拐弯速度。小于等于 90 度的转角速度一律降至零。
10 毫米参考圆速度	用于限制小圆弧和小曲率图形的速度。
	默认参数
点射 PWM 频率	手动方式下激光器所使用的 PWM 频率
点射峰值电流	手动方式下激光器所使用的峰值电流
默认气压	手动方式下使用的气压(需搭配比例阀使用)
开气延时	穿孔过程中 PLC 步骤"开气延时"所使用的延时时间
首点开气延时	整个图形开始加工过程中第一个孔所调用的开气延时
换气延时	在切割过程中切换不同气体时的延时
直接跟随最大高度	当高度低于设定值时,采用直接跟随;高于设定值时,采用定高
	跟随
	高级参数
曲线拟合精度	对样条曲线/Bezier 曲线转换为直线进行加工时的拟合精度
短距离不上抬的最大空	若图层参数中勾选了"使能短距离不上抬",当空移长度小于此长
移长度	度时,关光但不上抬。具体过程由"短距离关光过程"决定
使用蛙跳式上抬	Z 轴上抬至一半高度, XY 轴即开始空移, 以达到缩短空程移动时
	间的目的
空走时启用跟随	默认情况下空走时 Z 轴是不会运动的, 如空走时需要跟随, 用户
	可以选择此项。
加工时禁用跟随	默认情况下加工时 Z 轴是会运动的, 如加工时不需要跟随, 用户
	可以选择此项。
单位选择	根据使用习惯自行选择,界面上将随之切换。

四、附录

4.1 方管调试

确保管材沿Y轴方向摆放,如图1所示。

图 1

1. 调水平方向

调整管材 AB 两端的高度在同一水平位置,调试步骤:

- 点动 X, Y 轴将激光头移动到管材轴中心的位置(如图 1 所示的 C 点),点击"自动寻 边",如果 AB 面放置不是在水平方向(有倾斜角度),此步骤可以将 AB 面调整至水平 方向。
- 2) 打开 BCL3764 诊断界面(如图 2),点动 Y 轴,将激光头移动到近 A 端的位置(如图 1 所示远离夹具的一端),打开跟随,记录此时 Z 轴的坐标。沿着管材上表面由 A 端低速 点动到 B 端(如图 1 所示靠近夹具的一端),观察整个过程中 Z 轴坐标的变化。

- 3) 旋转 180 度,在 AB 面的对面重复步骤 2)。
- 4) 根据以下现象描述调整管材的放置。

■ 夹具放置不水平

如果步骤 2 和 3 的 Z 值均是从大到小,那么说明管材的 A 端比 B 端低,这种情况下,建议将夹具靠近 A 端的一边调高。

如果步骤 2 和 3 的 Z 值均是从小到大,那么说明管材的 A 端比 B 端高,这种情况下,建议 将夹具靠近 A 端的一边调低。

■ 管材放置不水平

如果步骤 2 和 3 的 Z 值一边是从大到小,另一边是从小到大,那么说明管材的 A 端比 B 端低。这种情况下,建议将管材的 A 端调高。

如果步骤 2 和 3 的 Z 值一边是从小到大,另一边是从大到小,那么说明管材的 A 端比 B 端 高。这种情况下,建议将管材的 A 端调低。

- 5) 重复上述 4 个步骤,直至将管材放置水平。
- 6) 将管材旋转 90°, 重复上述 5个步骤。

2. 调管材中心

调整管材与Y轴平行,确保从A端运动到B端的直线平行于Y轴。调试步骤:

- 将激光头点动到板材边缘,从A端低速点动到B端,检查整个运动过程,红光指示是 否紧靠管材边缘,如不满足上述规则请调整管材的放置。
- 2) 重复步骤 1), 直至从 A 端点动到 B 端, 红光指示一直紧靠管材边缘。
- 3) 将管材旋转 90°, 重复上述 2个步骤。
- 4) 确认好旋转中心后点"记录旋转中心"。

3. 方法1+ 方法2

- 1) 根据方法1的步骤1-5调整管材水平方向的放置。
- 2) 根据方法 2 的步骤 1-2 调整管材的中心。

4. 空走

导入图形,走边框,确定没超出行程后,进行空走查看轨迹是否正确。

4.2 快捷键

下表列出 CypTube 常用的快捷键,有些快捷键需要在特定的情况下才能使用的,已经在相关章节中介绍,此处不再一一列举。

快捷键	效果	使用条件
Ctrl + A	选择全部图形	无
Ctrl + O	打开文件	无
Ctrl + W	适应窗口	无
Ctrl + X	剪切图形到 Windows 剪贴板	选中要操作的图形
Ctrl + Y	重做刚刚撤销的命令	有被撤销的命令
Ctrl + Z	撤销刚刚完成的命令	有执行完成的命令
F3	查看全部图形	无
F4	查看整个机床范围	无
F5	查看在选择区域的图形	选中要操作的图形
F6	打开"图层参数设置"对话框	无
F7	显示/隐藏加工路径	无
F8	显示/隐藏空移路径	无
DEL(删除)	删除选中图形	选中要操作的图形
SPACE(空格)	重复上一条命令	上一条命令可重复执行